
NAG C Library Function Document

nag_fft_multid_full (c06pjc)

1 Purpose

nag_fft_multid_full (c06pjc) computes the multi-dimensional discrete Fourier transform of a multivariate
sequence of complex data values.

2 Specification

void nag_fft_multid_full (Nag_TransformDirection direct, Integer ndim,
const Integer nd[], Integer n, Complex x[], NagError *fail)

3 Description

nag_fft_multid_full (c06pjc) computes the multi-dimensional discrete Fourier transform of a multi-
dimensional sequence of complex data values zj1j2���jm , where j1 ¼ 0; 1; . . . ; n1 � 1, j2 ¼ 0; 1; . . . ; n2 � 1,

and so on. Thus the individual dimensions are n1; n2; . . . ; nm, and the total number of data values
n ¼ n1 � n2 � � � � � nm.

The discrete Fourier transform is here defined (e.g., for m ¼ 2) by

ẑzk1;k2 ¼
1ffiffiffi
n

p
Xn1�1

j1¼0

Xn2�1

j2¼0

zj1j2 � exp �2�i
j1k1
n1

þ j2k2
n2

�� ��
;

where k1 ¼ 0; 1; . . . ; n1 � 1 and k2 ¼ 0; 1; . . . ; n2 � 1. The plus or minus sign in the argument of the
exponential terms in the above definition determine the direction of the transform: a minus sign defines the
forward direction and a plus sign defines the backward direction.

The extension to higher dimensions is obvious. (Note the scale factor of 1ffiffi
n

p in this definition.) A call of

the function with direct ¼ Nag ForwardTransform followed by a call with
direct ¼ Nag BackwardTransform will restore the original data.

The data values must be supplied in a one-dimensional array using column-major storage ordering of
multi-dimensional data (i.e., with the first subscript j1 varying most rapidly).

This function uses a variant of the fast Fourier transform (FFT) algorithm (Brigham (1974)) known as the
Stockham self-sorting algorithm, which is described in Temperton (1983b).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983b) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Parameters

1: direct – Nag_TransformDirection Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then direct must be
set equal to Nag_ForwardTransform. If the Backward transform is to be computed then direct
must be set equal to Nag_BackwardTransform.

Constraint: direct ¼ Nag ForwardTransform or Nag BackwardTransform.

c06 – Fourier Transforms c06pjc

[NP3645/7] c06pjc.1

2: ndim – Integer Input

On entry: the number of dimensions (or variables) in the multivariate data, m.

Constraint: ndim � 1.

3: nd½ndim� – const Integer Input

On entry: the elements of nd must contain the dimensions of the ndim variables; that is, nd½i� 1�
must contain the dimension of the ith variable.

Constraints:

nd½i� � 1 for i ¼ 0; 1; . . . ; ndim� 1;
nd½i� must have less than 31 prime factors (counting repetitions) for i ¼ 0; 1; . . . ;ndim� 1.

4: n – Integer Input

On entry: the total number of data values, n.

Constraint: n must equal the product of the first ndim elements of the array nd.

5: x½n� – Complex Input/Output

On entry: the complex data values. Data values are stored in x using column-major ordering for
storing multi-dimensional arrays; that is, zj1j2���jm is stored in x½j1 þ n1j2 þ n1n2j3 þ � � ��.

On exit: the corresponding elements of the computed transform.

6: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, ndim ¼ hvaluei.
Constraint: ndim � 1.

NE_INT_2

nd½i� 1� must have < 31 prime factors: nd½i� 1� ¼ hvaluei, i ¼ hvaluei.
n must equal the product of the dimensions held in array nd: n ¼ hvaluei, product of nd elements is
hvaluei.
nd½i� 1� < 1: nd½i� 1� ¼ hvaluei, i ¼ hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

c06pjc NAG C Library Manual

c06pjc.2 [NP3645/7]

8 Further Comments

The time taken is approximately proportional to n� logn, but also depends on the factorization of the
individual dimensions nd½i�. The function is somewhat faster than average if their only prime factors are
2, 3 or 5; and fastest of all if they are powers of 2.

9 Example

This program reads in a bivariate sequence of complex data values and prints the two-dimensional Fourier
transform. It then performs an inverse transform and prints the sequence so obtained, which may be
compared to the original data values.

9.1 Program Text

/* nag_ftt_multid_full(c06pjc) Example Program
*
* Copyright 2002 Numerical Algorithms Group.
*
* Mark 7, 2002.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, n, ndim;
Integer exit_status=0;
NagError fail;
/* Arrays */
Complex *x=0;
Integer *nd=0;

INIT_FAIL(fail);
Vprintf("c06pjc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
Vscanf("%ld%ld", &ndim, &n);
if (n >= 1)

{
/* Allocate memory */
if (!(x = NAG_ALLOC(n, Complex)) ||

!(nd = NAG_ALLOC(ndim, Integer)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 0; i < ndim; ++i)
{

Vscanf("%ld",&nd[i]);
}

/* Read in complex data and print out. */
Vscanf("%*[^\n]");
for (i = 0; i < n; ++i)

{
Vscanf(" (%lf, %lf) ", &x[i].re, &x[i].im);

}
Vscanf("%*[^\n]");
Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, nd[0],

n/nd[0], x, nd[0], Nag_BracketForm, "%6.3f",
"Original data values\n", Nag_NoLabels, 0, Nag_NoLabels,

c06 – Fourier Transforms c06pjc

[NP3645/7] c06pjc.3

0, 90, 0, 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute transform */
c06pjc(Nag_ForwardTransform, ndim, nd, n, x, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from c06pjc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, nd[0],

n/nd[0], x, nd[0], Nag_BracketForm, "%6.3f",
"Components of discrete Fourier transform\n",
Nag_NoLabels, 0, Nag_NoLabels, 0, 90, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute inverse transform */
c06pjc(Nag_BackwardTransform, ndim, nd, n, x, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from c06pjc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, nd[0],

n/nd[0], x, nd[0], Nag_BracketForm, "%6.3f",
"Original data as restored by inverse transform\n",
Nag_NoLabels, 0, Nag_NoLabels, 0, 90, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

else
{

Vfprintf(stderr,"\nInvalid value of n.\n");
}

END:
if (x) NAG_FREE(x);
if (nd) NAG_FREE(nd);

return exit_status;
}

9.2 Program Data

c06pjc Example Program Data
2 15
3 5
(1.000,0.000) (0.994,-0.111) (0.903,-0.430)
(0.999,-0.040) (0.989,-0.151) (0.885,-0.466)
(0.987,-0.159) (0.963,-0.268) (0.823,-0.568)
(0.936,-0.352) (0.891,-0.454) (0.694,-0.720)
(0.802,-0.597) (0.731,-0.682) (0.467,-0.884)

c06pjc NAG C Library Manual

c06pjc.4 [NP3645/7]

9.3 Program Results

c06pjc Example Program Results

Original data values

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) (0.802,-0.597)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) (0.731,-0.682)
(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) (0.467,-0.884)

Components of discrete Fourier transform

(3.373,-1.519) (0.481,-0.091) (0.251, 0.178) (0.054, 0.319) (-0.419, 0.415)
(0.457, 0.137) (0.055, 0.032) (0.009, 0.039) (-0.022, 0.036) (-0.076, 0.004)
(-0.170, 0.493) (-0.037, 0.058) (-0.042, 0.008) (-0.038,-0.025) (-0.002,-0.083)

Original data as restored by inverse transform

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) (0.802,-0.597)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) (0.731,-0.682)
(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) (0.467,-0.884)

c06 – Fourier Transforms c06pjc

[NP3645/7] c06pjc.5 (last)

	c06pjc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	direct
	ndim
	nd
	n
	x
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

